L -Cysteine-assisted growth of core?satellite ZnS?Au nanoassemblies with high photocatalytic efficiency

Wei Ta Chen, Yung-Jung Hsu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

71 Scopus citations

Abstract

Core?satellite ZnS?Au nanoassemblies, in which each of the ZnS nanospheres was surrounded by a few Au nanoparticles, have been successfully prepared with a facile l-cysteine-assisted hydrothermal approach. The density of Au nanoparticles encircling each ZnS nanosphere can be readily controlled through suitably modulating the concentration of Au added. Because of the difference in band structures between ZnS and Au, a pronounced photoinduced charge separation was observed for the as-synthesized ZnS?Au nanoassemblies. As compared to the relevant commercial products like Au-loaded P-25 TiO2 and ZnS powders, ZnS?Au nanoassemblies exhibited superior photocatalytic performance, demonstrating their potential as an efficient photocatalyst in relevant redox reactions. Furthermore, the recycling test revealed that core?satellite nanoassemblies of ZnS?Au could be promisingly utilized in the long-term course of photocatalysis. The present study provides a new paradigm for designing the highly efficient semiconductor/metal hybrid photocatalysts that can effectively produce chemical energy from light.

Original languageEnglish
Pages (from-to)5918-5925
Number of pages8
JournalLangmuir
Volume26
Issue number8
DOIs
StatePublished - 20 Apr 2010

Fingerprint Dive into the research topics of 'L -Cysteine-assisted growth of core?satellite ZnS?Au nanoassemblies with high photocatalytic efficiency'. Together they form a unique fingerprint.

Cite this