Intersystem crossing-branched excited-state intramolecular proton transfer for o-nitrophenol: An ab initio on-the-fly nonadiabatic molecular dynamic simulation

Chao Xu, Le Yu, Chao Yuan Zhu, Jianguo Yu, Zexing Cao*

*Corresponding author for this work

Research output: Contribution to journalArticle

17 Scopus citations

Abstract

The 6SA-CASSCF(10, 10)/6-31G (d, p) quantum chemistry method has been applied to perform on-the-fly trajectory surface hopping simulation with global switching algorithm and to explore excited-state intramolecular proton transfer reactions for the o-nitrophenol molecule within low-lying electronic singlet states (S0 and S1) and triplet states (T1 and T2). The decisive photoisomerization mechanisms of o-nitrophenol upon S1 excitation are found by three intersystem crossings and one conical intersection between two triplet states, in which T1 state plays an essential role. The present simulation shows branch ratios and timescales of three key processes via T1 state, non-hydrogen transfer with ratio 48% and timescale 300 fs, the tunneling hydrogen transfer with ratios 36% and timescale 10 ps, and the direct hydrogen transfer with ratios 13% and timescale 40 fs. The present simulated timescales might be close to low limit of the recent experiment results.

Original languageEnglish
Article number26768
JournalScientific reports
Volume6
DOIs
StatePublished - 25 May 2016

Fingerprint Dive into the research topics of 'Intersystem crossing-branched excited-state intramolecular proton transfer for o-nitrophenol: An ab initio on-the-fly nonadiabatic molecular dynamic simulation'. Together they form a unique fingerprint.

  • Cite this