TY - JOUR
T1 - Influence of two-dimensional gas phase radiation on downward flame spread
AU - Lin, Tzung Hsien
AU - Chen, Chiun-Hsun
PY - 1999/1/1
Y1 - 1999/1/1
N2 - This work investigates how radiation heat transfer influences downward flame spread by presenting a gas phase radiation model, described by a two dimensional P-1 approximation method, to incorporate with the combustion model of Duh and Chen (1991). The parametric study is based on the variation of gravity, which changes the Damkohler number (Da) and radiation to conduction parameter (1/N∞) simultaneously. Comparing the results with the previous studies of Duh and Chen (1991) and Chen and Cheng (1994), which only considered the radiation effect in cross stream direction, the role of stream-wise radiation was identified. The stream-wise radiation contributes to reinforce the forward heat transfer rate subsequently increasing the flame spread rate. However, this model also provides more directional radiation loss than that of Chen and Cheng (1994) and, in doing so, draws more energy out from the flame to further reduce its strength. The results indicates that the effect of heat loss is greater than that of enhancing the upstream heat transfer since the flame spread rate in the present model is always lower than the one predicted by Duh and Chen (1991). Finally, a contour of the Planck mean absorption coefficient distribution is illustrated to demonstrate the effectiveness of gas radiation distribution. It reveals that the strongest radiation occurs near the pyrolyzing surface and the other significant one is in the plume region. A comparisons with available experimental data also given to evaluate the ability of predict in the present combustion model.
AB - This work investigates how radiation heat transfer influences downward flame spread by presenting a gas phase radiation model, described by a two dimensional P-1 approximation method, to incorporate with the combustion model of Duh and Chen (1991). The parametric study is based on the variation of gravity, which changes the Damkohler number (Da) and radiation to conduction parameter (1/N∞) simultaneously. Comparing the results with the previous studies of Duh and Chen (1991) and Chen and Cheng (1994), which only considered the radiation effect in cross stream direction, the role of stream-wise radiation was identified. The stream-wise radiation contributes to reinforce the forward heat transfer rate subsequently increasing the flame spread rate. However, this model also provides more directional radiation loss than that of Chen and Cheng (1994) and, in doing so, draws more energy out from the flame to further reduce its strength. The results indicates that the effect of heat loss is greater than that of enhancing the upstream heat transfer since the flame spread rate in the present model is always lower than the one predicted by Duh and Chen (1991). Finally, a contour of the Planck mean absorption coefficient distribution is illustrated to demonstrate the effectiveness of gas radiation distribution. It reveals that the strongest radiation occurs near the pyrolyzing surface and the other significant one is in the plume region. A comparisons with available experimental data also given to evaluate the ability of predict in the present combustion model.
UR - http://www.scopus.com/inward/record.url?scp=0033355578&partnerID=8YFLogxK
U2 - 10.1080/00102209908924183
DO - 10.1080/00102209908924183
M3 - Article
AN - SCOPUS:0033355578
VL - 141
SP - 83
EP - 106
JO - Combustion Science and Technology
JF - Combustion Science and Technology
SN - 0010-2202
IS - 1
ER -