Impact of surface orientation on the sensitivity of FinFETs to process variations - An assessment based on the analytical solution of the Schrödinger equation

Yu Sheng Wu*, Pin Su

*Corresponding author for this work

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

This paper investigates the impact of surface orientation on Vth sensitivity to process variations for Si and Ge fin-shaped field-effect transistors (FinFETs) using an analytical solution of the Schrdinger equation. Our theoretical model considers the parabolic potential well due to short-channel effects and, therefore, can be used to assess the quantum-confinement effect in short-channel FinFETs. Our study indicates that, for ultrascaled FinFETs, the importance of channel thickness (tch) variations increases due to the quantum-confinement effect. The Si-(100) and Ge-(111) surfaces show lower Vth sensitivity to the tch variation as compared with other orientations. On the contrary, the quantum-confinement effect reduces the Vth sensitivity to the L eff variation, and Si-(111) and Ge-(100) surfaces show lower V th sensitivity as compared with other orientations. Our study may provide insights for device design and circuit optimization using advanced FinFET technologies.

Original languageEnglish
Article number5604680
Pages (from-to)3312-3317
Number of pages6
JournalIEEE Transactions on Electron Devices
Volume57
Issue number12
DOIs
StatePublished - 1 Dec 2010

Keywords

  • Fin-shaped field-effect transistor (FinFET)
  • quantum effects
  • surface orientation
  • variation

Fingerprint Dive into the research topics of 'Impact of surface orientation on the sensitivity of FinFETs to process variations - An assessment based on the analytical solution of the Schrödinger equation'. Together they form a unique fingerprint.

  • Cite this