High Performance All Nonmetal SiNx Resistive Random Access Memory with Strong Process Dependence

Te Jui Yen, Albert Chin*, Vladimir Gritsenko

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


All-nonmetal resistive random access memory (RRAM) with a N+–Si/SiNx/P+–Si structure was investigated in this study. The device performance of SiNx developed using physical vapor deposition (PVD) was significantly better than that of a device fabricated using plasma-enhanced chemical vapor deposition (PECVD). The SiNx RRAM device developed using PVD has a large resistance window that is larger than 104 and exhibits good endurance to 105 cycles under switching pulses of 1 μs and a retention time of 104 s at 85 °C. Moreover, the SiNx RRAM device developed using PVD had tighter device-to-device distribution of set and reset voltages than those developed using PECVD. Such tight distribution is crucial to realise a large-size cross-point array and integrate with complementary metal-oxide-semiconductor technology to realise electronic neurons. The high performance of the SiNx RRAM device developed using PVD is attributed to the abundant defects in the PVD dielectric that was supported by the analysed conduction mechanisms obtained from the measured current–voltage characteristics.

Original languageEnglish
Article number2807
Number of pages9
JournalScientific reports
Issue number1
StatePublished - 18 Feb 2020

Fingerprint Dive into the research topics of 'High Performance All Nonmetal SiN<sub>x</sub> Resistive Random Access Memory with Strong Process Dependence'. Together they form a unique fingerprint.

Cite this