Gate-Tunable Conducting Oxide Metasurfaces

Yao-Wei Huang, Ho Wai Howard Lee, Ruzan Sokhoyan, Ragip A. Pala, Krishnan Thyagarajan, Seunghoon Han, Din Ping Tsai, Harry A. Atwater*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

325 Scopus citations


Metasurfaces composed of planar arrays of subwavelength artificial structures show promise for extraordinary light manipulation. They have-yielded novel-ultrathin optical components such as flat lenses, wave plates, holographic surfaces, and orbital angular momentum manipulation and detection over a broad range of the electromagnetic spectrum. However, the optical properties of metasurfaces developed to date do not allow for versatile tunability Of reflected or transmitted wave amplitude and phase after their fabrication,. thus limiting their use in a wide range of applications. Here, we experimentally, demonstrate :a gate-tunable metasurface :that enables dynamic electrical control,of the phase and amplitude of the plane wave reflected from the metasurface. Tunability arises from field-effect modulation Of the complex refractive index Of conducting oxide layers incorporated, into metasurface antenna elements which are configured in reflectarray geometry:We measure a phase shift of 180 degrees and similar to 30% change in the reflectance by applying 2.5 V gate bias. Additionally, we demonstrate modulation at-frequencies exceeding 10 MHz and electrical switching of +/- 1 order diffracted beams by electrical control over subgroups of metasurface elements, a basic requirement for electrically tunable beam-steering phased array metasurfaces. In principle, electrically gated phase and amplitude control allows for electrical addressability of individual metasurface elements and opens the path to applications in ultrathin optical components for imaging and sensing technologies, such as reconfigurable bearh steering devices, dynamic holograms, tunable ultrathin lenses, nanoprojectors, and nanoscale spatial light modulators.

Original languageEnglish
Pages (from-to)5319-5325
Number of pages7
JournalNano letters
Issue number9
StatePublished - 14 Sep 2016


  • Metasurfaces
  • transparent conducting oxides
  • field-effect modulation
  • phase modulation
  • epsilon-near-zero materials
  • plasmonics
  • modulators
  • beam steering

Cite this