Fuzzy Personalized Scoring Model for Recommendation System

Chao Lung Yang, Shang Che Hsu, Kai Lung Hua, Wen Huang Cheng

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

In this research, we aim to propose a data preprocessing framework particularly for financial sector to generate the rating data as input to the collaborative system. First, clustering technique is applied to cluster all users based on their demographic information which might be able to differentiate the customers' background. Then, for each customer group, the importance of demographic characteristics which are highly associated with financial products purchasing are analyzed by the proposed fuzzy integral technique. The importance scores across items and customers are generated either on customer groups and individuals. The analysis shows the proposed method is able to differentiate customers based on their demographic and purchasing behaviors. Also, the generated rating matrix can be directly used for collaborative filtering model.

Original languageEnglish
Title of host publication2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1577-1581
Number of pages5
ISBN (Electronic)9781479981311
DOIs
StatePublished - May 2019
Event44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
Duration: 12 May 201917 May 2019

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2019-May
ISSN (Print)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
CountryUnited Kingdom
CityBrighton
Period12/05/1917/05/19

Keywords

  • Customer Segmentation
  • Fuzzy Integral
  • Recommendation System

Fingerprint Dive into the research topics of 'Fuzzy Personalized Scoring Model for Recommendation System'. Together they form a unique fingerprint.

Cite this