Franck-Condon simulation of vibrationally resolved optical spectra for zinc complexes of phthalocyanine and tetrabenzoporphyrin including the Duschinsky and Herzberg-Teller effects

Meiyuan Guo, Rongxing He*, Yulan Dai, Wei Shen, Ming Li, Chao Yuan Zhu, Sheng Hsien Lin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

High resolved absorption and fluorescence spectra of zinc complexes of phthalocyanine (ZnPc) and tetrabenzoporphyrin (ZnTBP) in the region of Q states were reported. Few theoretical investigations were performed to simulate the well-resolved spectra and assigned the vibrational bands of the large molecules, especially for high symmetrical characteristic molecules, on account of the difficulties to optimize the excited states and analyze a large number of final vibrational-normal modes. In the present work, the S0 ↔ S 1 absorption and fluorescence spectra (that is, the Q band) of ZnPc and ZnTBP were simulated using time-dependent density functional theory with the inclusions of Duschinsky and Herzberg-Teller contributions to the electronic transition dipole moments. The theoretical results provide a good description of the optical spectra and are proved to be in excellent agreement with experimental spectra in inert-gas matrices or in supersonic expansion. This study focused attentions on the optical spectral similarities and contrasts between ZnPc and ZnTBP, in particular the noticeable Duschinsky and Herzberg-Teller effects on the high-resolved absorption and fluorescence spectra were considered. Substitution of meso-tetraaza on the porphyrin macrocycle framework could affect the ground state geometry and alter the electron density distributions the orbital energies that accessible in the Q band region of the spectrum. The results were used to help interpret both the nature of the electronic transitions in Q band region, and the spectral discrepancies between phthalocyanine and porphyrin systems.

Original languageEnglish
Article number144313
JournalJournal of Chemical Physics
Volume136
Issue number14
DOIs
StatePublished - 14 Apr 2012

Fingerprint Dive into the research topics of 'Franck-Condon simulation of vibrationally resolved optical spectra for zinc complexes of phthalocyanine and tetrabenzoporphyrin including the Duschinsky and Herzberg-Teller effects'. Together they form a unique fingerprint.

Cite this