Forming-free bipolar resistive switching in nonstoichiometric ceria films

Muhammad Ismail, Chun Yang Huang, Debashis Panda, Chung Jung Hung, Tsung Ling Tsai, Jheng Hong Jieng, Chun An Lin, Umesh Chand, Anwar Manzoor Rana, Ejaz Ahmed, Ijaz Talib, Muhammad Younus Nadeem, Tseung-Yuen Tseng

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

The mechanism of forming-free bipolar resistive switching in a Zr/CeOx/Pt device was investigated. High-resolution transmission electron microscopy and energy-dispersive spectroscopy analysis indicated the formation of a ZrOy layer at the Zr/CeOx interface. X-ray diffraction studies of CeOx films revealed that they consist of nano-polycrystals embedded in a disordered lattice. The observed resistive switching was suggested to be linked with the formation and rupture of conductive filaments constituted by oxygen vacancies in the CeOx film and in the nonstoichiometric ZrOy interfacial layer. X-ray photoelectron spectroscopy study confirmed the presence of oxygen vacancies in both of the said regions. In the low-resistance ON state, the electrical conduction was found to be of ohmic nature, while the high-resistance OFF state was governed by trap-controlled space charge-limited mechanism. The stable resistive switching behavior and long retention times with an acceptable resistance ratio enable the device for its application in future nonvolatile resistive random access memory (RRAM).

Original languageEnglish
Pages (from-to)1-8
Number of pages8
JournalNanoscale Research Letters
Volume9
Issue number1
DOIs
StatePublished - 13 Mar 2014

Keywords

  • Cerium oxide
  • Metal-insulator-metal structure
  • Oxygen vacancy
  • Resistive switching
  • Space charge-limited conduction (SCLC)

Fingerprint Dive into the research topics of 'Forming-free bipolar resistive switching in nonstoichiometric ceria films'. Together they form a unique fingerprint.

Cite this