Flame stabilization and blowoff over a single droplet

Lung Weei Huang, Chiun-Hsun Chen

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


The burning behavior of a liquid fuel droplet under forced convection has been investigated numerically. The normalized governing system makes up the complete Navier-Stokes momentum, energy, species, and continuity equations in r-z coordinates with a one-step overall chemical reaction and finite-rale global kinetics. The evaporation process obeys the Clausius-Clapeyron law. The effects of incoming velocity (ua) and droplet diameter (d) are investigated separately. The envelope flame exists when free stream velocity is law. When u„ increases gradually, a critical velocity can be reached, at which the flame suddenly converts into a wake flame. No side flame is found. The envelope flames are retained throughout the decrement of the droplet diameter under the tow-speed flow regime. The d2 law is found to still hold in such an environment.

Original languageEnglish
Pages (from-to)53-71
Number of pages19
JournalNumerical Heat Transfer; Part A: Applications
Issue number1
StatePublished - 1 Jan 1995

Fingerprint Dive into the research topics of 'Flame stabilization and blowoff over a single droplet'. Together they form a unique fingerprint.

Cite this