Femtochemistry of norrish type-1 reactions: I. Experimental and theoretical studies of acetone and related ketones on the s1 surface

Wei-Guang Diau, Garsten Kötting, Ahmed H. Zewail*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

122 Scopus citations

Abstract

The dissociation dynamics of two acetone isotopomers ([DJ- and [DJacetone) after 93 kcalmol-1 (307 nm) excitation to the S1(n,π*) state have been investigated using femtosecond pump-probe mass spectrometry. We found that the nuclear motions of the molecule on the S1, surface involve two time scales. The initial femtosecond motion corresponds to the dephasing of the wave packet out of the Franck-Condon region on the S1 surface. For longer times, the direct observation of the build-up of the acetyl radical confirms that the S1 α-cleavage dynamics of acetone is on the nanosecond time scale. Density functional theory and ab initia calculations have been carried out to characterize the potential energy surfaces for the S0, S1 and T1 sfofes of acetone and six other related aliphatic ketones. For acetone, the S1 energy barrier along the single α-positioned carbon - carbon (α-CC) bond-dissociation coordinate (to reach the S0/S1 conical intersection) was calculated to be ISkcalmol-1 (∼HOkcalmol-1 above the S0 minimum) for the first step of the nonconcerted α-CC bond cleavage; the concerted path is energetically unfavorable, consistent with experiments. The S1 barrier heights for other aliphatic ketones were found to be substantially lower than that of acetone by methyl substitutions at the a-position. The α-CC bond dissociation energy barrier of acetone on the T, surface was calculated to be only 5 kcal mol-1 (∼90kcal mol-1 above the S0 minimum), which is substantially lower than the barrier on the S, surface. Based on the calculations, the α-cleavage reaction mechanism of acetone occurring on the S0, S, and T, surfaces can be better understood via a simple physical picture within the framework of valence-bond theory. The theoretical calculations support the conclusion that the observed nanosecond-scale S1 dynamics of acetone below the barrier is governed by a rate-limiting S1 →T1, intersystem crossing process followed by α-cleavage on the T1 surface. However, at high energies, the α-cleavage can proceed by barrier crossing on the S1 surface, a situation which is demonstrated for cyclobutanone in the accompanying paper.

Original languageEnglish
Pages (from-to)273-293
Number of pages21
JournalChemPhysChem
Volume2
Issue number5
DOIs
StatePublished - 18 May 2001

Keywords

  • Acetone
  • Conical intersection
  • Femtochemistry
  • Mass spectrometry
  • Norrish reactions

Fingerprint Dive into the research topics of 'Femtochemistry of norrish type-1 reactions: I. Experimental and theoretical studies of acetone and related ketones on the s<sub>1</sub> surface'. Together they form a unique fingerprint.

Cite this