Fast imaging in the dark by using convolutional network

Mian Jhong Chiu, Guo Zhen Wang, Jen-Hui Chuang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

While fast imaging in low-light condition is crucial for surveillance and robot applications, it is still a formidable challenge to resolve the seemingly inevitable high noise level and low photon count issues. A variety of image enhancement methods such as de-blurring and de-noising have been proposed in the past. However, limitations can still be found in these methods under extreme low-light condition. To overcome such difficulty, a learning-based image enhancement approach is proposed in this paper. In order to support the development of learning-based methodology, we collected a new low-lighting dataset (<0.1 lux) of raw short-exposure (6.67 ms) images, as well as the corresponding long-exposure reference images. Based on such dataset, we develop a light-weight convolutional network structure which is involved with fewer parameters and has lower computation cost compared with a regular-size network. The presented work is expected to make possible the implementation of more advanced edge devices, and their applications.

Original languageEnglish
Title of host publication2019 IEEE International Symposium on Circuits and Systems, ISCAS 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728103976
DOIs
StatePublished - 1 Jan 2019
Event2019 IEEE International Symposium on Circuits and Systems, ISCAS 2019 - Sapporo, Japan
Duration: 26 May 201929 May 2019

Publication series

NameProceedings - IEEE International Symposium on Circuits and Systems
Volume2019-May
ISSN (Print)0271-4310

Conference

Conference2019 IEEE International Symposium on Circuits and Systems, ISCAS 2019
CountryJapan
CitySapporo
Period26/05/1929/05/19

Keywords

  • Light-weight convolutional network
  • Low-light imaging

Fingerprint Dive into the research topics of 'Fast imaging in the dark by using convolutional network'. Together they form a unique fingerprint.

Cite this