Abstract
Mining utility itemsets from data steams is one of the most interesting research issues in data mining and knowledge discovery. In this paper, two efficient sliding window-based algorithms, MHUI-BIT (Mining High-Utility Itemsets based on BITvector) and MHUI-TID (Mining High-Utility Itemsets based on TIDlist), are proposed for mining high-utility itemsets from data streams. Based on the sliding window-based framework of the proposed approaches, two effective representations of item information, Bitvector and TIDlist, and a lexicographical tree-based summary data structure, LexTree-2HTU, are developed to improve the efficiency of discovering high-utility itemsets with positive profits from data streams. Experimental results show that the proposed algorithms outperform than the existing approaches for discovering high-utility itemsets from data streams over sliding windows. Beside, we also propose the adapted approaches of algorithms MHUI-BIT and MHUI-TID in order to handle the case when we are interested in mining utility itemsets with negative item profits. Experiments show that the variants of algorithms MHUI-BIT and MHUI-TID are efficient approaches for mining high-utility itemsets with negative item profits over stream transaction-sensitive sliding windows.
Original language | English |
---|---|
Pages (from-to) | 495-522 |
Number of pages | 28 |
Journal | Knowledge and Information Systems |
Volume | 28 |
Issue number | 3 |
DOIs | |
State | Published - Sep 2011 |
Keywords
- Data mining; Data streams; Utility mining; High-utility itemsets; Utility itemset with positive item profits; Utility itemset with negative item profits