Exploring dynamic behavior of a dip slope by shaking table tests

Meng-Chia Weng, Cheng Han Lin, Hung Hui Li, Wei Zu, Ji Jie Chen

Research output: Contribution to conferencePaper

Abstract

This study investigated the effect of internal discontinuity on the dynamic response of a dip slope and evaluated the performance of Newmark’s theory on the sliding of a dip slope with multi-slip planes. A series of shaking table tests were performed under various geometric conditions to explore the dynamic behavior of a dip slope under different external excitations. The test results, including for deformation processes and critical accelerations, under various slope angles, slope sizes, and seismic intensities were examined and further compared with Newmark’s theory. The results of this study are summarized as follows: (1) Two types of slope sliding (differential and complete) were determined. (2) Increasing the slope angle and the height of sliding mass tended to shorten the duration of slope deformation. (3) By comparing critical acceleration between the experimental and theoretical results, Newmark’s theory was determined to overestimate critical acceleration during seismic-induced dip slope failure. This may cause unsafe evaluations, and sliding along existing discontinuities develops more easily in reality.

Original languageEnglish
StatePublished - 1 Jan 2018
Event52nd U.S. Rock Mechanics/Geomechanics Symposium - Seattle, United States
Duration: 17 Jun 201820 Jun 2018

Conference

Conference52nd U.S. Rock Mechanics/Geomechanics Symposium
CountryUnited States
CitySeattle
Period17/06/1820/06/18

Fingerprint Dive into the research topics of 'Exploring dynamic behavior of a dip slope by shaking table tests'. Together they form a unique fingerprint.

Cite this