Exploration of water jet generated by Qswitched laser induced water breakdown with different depths beneath a flat free surface

Ross C.C. Chen*, Y. T. Yu, Kuan-Wei Su, Jenn-Fang Chen, Yung-Fu Chen

*Corresponding author for this work

Research output: Contribution to journalArticle

16 Scopus citations

Abstract

The dynamics of a water jet on a flat free surface are investigated using a nanosecond pulsed laser for creating an oscillating bubble with different depths beneath the free surface. A thin jet is shown to deform a crater surface resulted from surface depression and cause a circular ringshaped crater on the connection surface between the crater of surface depression and the thin jet. The collapse of this circular ring-shaped crater is proposed to the crown-like formation around a thick jet. The evolution of the bubble depth suggests a classification of four distinctive ranges of the bubble depths: non-crown formation when the parameter of bubble depth over the maximum bubble radius γ ≤?0.5, unstable crown formation when 0.5 ≤? γ ≤?0.6, crown-like structure with a complete crown wall when 0.6 ≤ ≤?1.1, and non-crown formation when 1.1 ≤?. Furthermore, the orientation of the crown wall gradually turns counterclockwise to vertical direction with increasing ? from 0.5 to 1.1, implying a high correlation between the orientation of the crown wall and the depth of the bubble. This correlation is explained and discussed by the directional change of the jet eruption from the collapse of circular ring-shaped crater.

Original languageEnglish
Pages (from-to)445-453
Number of pages9
JournalOptics Express
Volume21
Issue number1
DOIs
StatePublished - 14 Jan 2013

Fingerprint Dive into the research topics of 'Exploration of water jet generated by Qswitched laser induced water breakdown with different depths beneath a flat free surface'. Together they form a unique fingerprint.

  • Cite this