Enhancing the predictive coding efficiency with control technologies for lossless compression of images

C. H. Lee, L. J. Kau*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

This study applies techniques commonly used in control systems to enhance the efficiency of predictive coding in lossless compression of images for pixels around boundaries. Actually, the predictive coding system behaves just like a multi-input single-output system with the predictor itself can be regarded as the system model. Besides, the prediction error is usually feedback for the adaptation of predictor coefficients so that the prediction error of consecutive pixels can be minimised. When compared with a control system, which is to follow the system command as precisely as possible, the authors find the objective of both systems are the same. Moreover, a boundary among image pixels can be considered a step command in control systems. These observations lead to the idea of using control technologies to improve the prediction result around boundaries. To realise this idea, an adaptive Takagi-Sugeno fuzzy neural network and a proportional controller in control systems are applied as the predictor and the error compensator, respectively. To accelerate the run-time performance of the proposed system under limited resources, the online training area is even not used for network adaptation, but the performance is still comparable with state-of-the-art predictors and coders as the authors will see in the experiment.

Original languageEnglish
Pages (from-to)251-263
Number of pages13
JournalIET Image Processing
Volume6
Issue number3
DOIs
StatePublished - Apr 2012

Fingerprint Dive into the research topics of 'Enhancing the predictive coding efficiency with control technologies for lossless compression of images'. Together they form a unique fingerprint.

Cite this