TY - JOUR
T1 - Enhanced immersion cooling using two-tier micro- and nano-structures
AU - Hsu, Ya Tzu
AU - Li, Jia Xiong
AU - Lu, Ming-Chang
PY - 2018/2/25
Y1 - 2018/2/25
N2 - Continual increases in the functionality and miniaturization of electronic devices have resulted in a rapid increase in the power density of such devices. Thus, an efficient cooling technology is required to maximize heat dissipation and prevent electronic failure. Immersion cooling is a promising technique for the thermal management of high-power-density electronics. However, common working fluids in immersion cooling have high global warming potential, and the heat transfer performance of immersion cooling requires improvement to achieve efficient cooling of state-of-the-art high-power-density electronics. In this study, Novec 649, which has low global warming potential and a low boiling point, was applied as a working fluid for immersion cooling. A Si nanowire (SiNW) array, Si micropillar (SiMP) array, and Si nanowires on a Si micropillar (SiNW/MP) two-tier structure were employed to enhance boiling performance. The SiMP surface exhibited the highest critical heat flux (CHF) of 23.5 ± 1.3 W/cm2, whereas the SiNW surface exhibited the lowest CHF but a relatively high heat transfer coefficient (HTC). The SiNW/MP surface exhibited the highest HTC of 23611.7 ± 1586.2 W/m2 K and a relatively large CHF of 17.4 ± 1.2 W/cm2. Compared with a plain SiO2 surface, the CHF and HTC of the SiNW/MP two-tier structure could be enhanced by 30% and 455%, respectively. These results suggest that the SiNW/MP surface is effective for enhancing immersion cooling.
AB - Continual increases in the functionality and miniaturization of electronic devices have resulted in a rapid increase in the power density of such devices. Thus, an efficient cooling technology is required to maximize heat dissipation and prevent electronic failure. Immersion cooling is a promising technique for the thermal management of high-power-density electronics. However, common working fluids in immersion cooling have high global warming potential, and the heat transfer performance of immersion cooling requires improvement to achieve efficient cooling of state-of-the-art high-power-density electronics. In this study, Novec 649, which has low global warming potential and a low boiling point, was applied as a working fluid for immersion cooling. A Si nanowire (SiNW) array, Si micropillar (SiMP) array, and Si nanowires on a Si micropillar (SiNW/MP) two-tier structure were employed to enhance boiling performance. The SiMP surface exhibited the highest critical heat flux (CHF) of 23.5 ± 1.3 W/cm2, whereas the SiNW surface exhibited the lowest CHF but a relatively high heat transfer coefficient (HTC). The SiNW/MP surface exhibited the highest HTC of 23611.7 ± 1586.2 W/m2 K and a relatively large CHF of 17.4 ± 1.2 W/cm2. Compared with a plain SiO2 surface, the CHF and HTC of the SiNW/MP two-tier structure could be enhanced by 30% and 455%, respectively. These results suggest that the SiNW/MP surface is effective for enhancing immersion cooling.
KW - Boiling heat transfer
KW - Critical heat flux
KW - Heat transfer coefficient
KW - Immersion cooling
KW - Novec 649
KW - Two-tier structure
UR - http://www.scopus.com/inward/record.url?scp=85039149267&partnerID=8YFLogxK
U2 - 10.1016/j.applthermaleng.2017.12.067
DO - 10.1016/j.applthermaleng.2017.12.067
M3 - Article
AN - SCOPUS:85039149267
VL - 131
SP - 864
EP - 873
JO - Applied Thermal Engineering
JF - Applied Thermal Engineering
SN - 1359-4311
ER -