Abstract
In this work, a novel energy-recycling single-Antenna full-duplex (FD) radio is designed, in which a new three-port element including a power divider and an energy harvester is added between the circulator and the receiver (RX) chain. The presence of this new element brings advantages over the state of the art in terms of both spectral efficiency and energy consumption. In particular, it provides the means of performing both an arbitrary attenuation of the incoming signal, which in turn increases the effectiveness of the state-of-The-Art self-interference cancellation strategies subsequently adopted in the RX chain, and the recycling of a non-negligible portion of the energy leaked through the nonideal circulator. The performance of this architecture is analyzed in a practically relevant four-node scenario in which two nodes operate in FD and two nodes in half-duplex (HD). Analytical approximations are derived for both the achievable rates of the transmissions performed by the FD and HD radios and the energy recycled by the FD radios. The accuracy of these derivations is confirmed by numerical simulations. Quantitatively, achievable rate gains up to 40% over the state-of-The-Art alternatives, in the considered scenario, are highlighted. Furthermore, up to 50% of the leaked energy at the circulator, i.e., 5% of the energy of the transmitted signal, can be recycled.
Original language | English |
---|---|
Article number | 7276978 |
Pages (from-to) | 2948-2962 |
Number of pages | 15 |
Journal | IEEE Journal on Selected Areas in Communications |
Volume | 33 |
Issue number | 12 |
DOIs | |
State | Published - 1 Dec 2015 |
Keywords
- device-To-device (D2D) communications
- energy harvesting
- Full-duplex radios
- self-interference cancellation
- wireless backhaul