Efficient simulation of the spatial transmission dynamics of influenza

Meng-Tsung Tsai*, Tsurng Chen Chern, Jen Hsiang Chuang, Chih Wen Hsueh, Steve Kuo, Churn Jung Liau, Steven Riley, Bing Jie Shen, Da Wei Wang, Chih Hao Shen, Tsan Sheng Hsu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Early data from the 2009 H1N1 pandemic (H1N1pdm) suggest that previous studies over-estimated the withincountry rate of spatial spread of pandemic influenza. As large spatially-resolved data sets are constructed, the need for efficient simulation code with which to investigate the spatial patterns of the pandemic becomes clear. Here, we describe a significant improvement in the efficiency of an individual-based stochastic disease simulation framework that has been used for multiple previous studies. We quantify the efficiency of the revised algorithm and present an alternative parameterization of the model in terms of the basic reproductive number. We apply the model to the population of Taiwan and demonstrate how the location of the initial seed can influence spatial incidence profiles and the overall spread of the epidemic. Differences in incidence are driven by the relative connectivity of alternate seed locations.

Original languageEnglish
Article numberecurrents.RRN1141
JournalPLoS Currents
Issue numberJAN
DOIs
StatePublished - 1 Dec 2010

Fingerprint Dive into the research topics of 'Efficient simulation of the spatial transmission dynamics of influenza'. Together they form a unique fingerprint.

Cite this