Efficient Road Lane Marking Detection with Deep Learning

Ping Rong Chen, Shao Yuan Lo, Hsueh-Ming Hang, Sheng Wei Chan, Jing Jhih Lin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Lane mark detection is an important element in the road scene analysis for Advanced Driver Assistant System (ADAS). Limited by the onboard computing power, it is still a challenge to reduce system complexity and maintain high accuracy at the same time. In this paper, we propose a Lane Marking Detector (LMD) using deep convolutional neural network to extract robust lane marking features. To improve its performance with a target of lower complexity, the dilated convolution is adopted. A shallower and thinner structure is designed to decrease the computational cost. Moreover, we also design post-processing algorithms to construct 3rd-oder polynomial models to fit into the curved lanes. Our system shows promising results on the captured road scenes.

Original languageEnglish
Title of host publication2018 IEEE 23rd International Conference on Digital Signal Processing, DSP 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538668115
DOIs
StatePublished - 31 Jan 2019
Event23rd IEEE International Conference on Digital Signal Processing, DSP 2018 - Shanghai, China
Duration: 19 Nov 201821 Nov 2018

Publication series

NameInternational Conference on Digital Signal Processing, DSP
Volume2018-November

Conference

Conference23rd IEEE International Conference on Digital Signal Processing, DSP 2018
CountryChina
CityShanghai
Period19/11/1821/11/18

Keywords

  • deep convolutional neural networks
  • dilated convolution
  • lane detection
  • semantic segmentation

Fingerprint Dive into the research topics of 'Efficient Road Lane Marking Detection with Deep Learning'. Together they form a unique fingerprint.

Cite this