Effects of growth interruption time on InGaN/GaN quantum dots grown by metal organic chemical vapor deposition

H. H. Yao, G. S. Huang, Tien-chang Lu, C. Y. Chen, W. D. Liang, Hao-Chung Kuo, S. C. Wang*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Wide-bandgap gallium nitride (GaN) quantum dot (QD) structure is attractive because it is a zero-dimensional (0-D) confinement structure and has many unique physical characteristics. We have successfully grown self-assembled InGaN QDs structure by metal organic chemical vapor deposition. A high quality GaN/sapphire template with a flat surface and the suitable growth condition including low growth temperature and low V/III ratio were used to grow InGaN QDs structure. The density of InGaN QDs is about 4.5 × 10 10 cm -2 with an average lateral size of 11.5 nm and an average height of 1.6 nm. The effect of the interruption growth for InGaN QDs structure was systematic studied with the growth temperature of 660°C. The surface morphology and optical property was measured by atomic forced microscopy and various temperature PL, respectively. The results indicated that as increasing interruption time from 30s to 120s, QDs area occupied on the surface above the wetting layer increases from 5.2% to 7.2%, and the In composition decreases from 25% to 21%. The results were discussed by considering the influences of ad-atom desorption and diffusion effect between wetting layer and InGaN QDs structure. Our results suggest that the interruption growth during an optimum time can modify the size of InGaN QDs and extend the emission wavelength to short wavelength, and at the same time improve the QD optical quality. Using this technique was feasible for formation of multi layer InGaN QDs structures and applicable for the fabrication of GaN-based light emitting devices.

Original languageEnglish
Title of host publicationGallium Nitride Materials and Devices
DOIs
StatePublished - 24 May 2006
EventGallium Nitride Materials and Devices - San Jose, CA, United States
Duration: 23 Jan 200625 Jan 2006

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume6121
ISSN (Print)0277-786X

Conference

ConferenceGallium Nitride Materials and Devices
CountryUnited States
CitySan Jose, CA
Period23/01/0625/01/06

Keywords

  • AFM
  • InGaN/GaN
  • Interruption growth
  • MOCVD
  • PL
  • Self-assembled quantum dots

Fingerprint Dive into the research topics of 'Effects of growth interruption time on InGaN/GaN quantum dots grown by metal organic chemical vapor deposition'. Together they form a unique fingerprint.

Cite this