Effect of hole blocking dielectric layer on microstructure and photoconducting properties of polycrystalline Se thin films

Cheng Yi Chang, Yi Jie Lin, Yu Wei Huang, Jye Yow Liao, Jian Siang Lin, Fu-Ming Pan*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We fabricated polycrystalline selenium (c-Se) based photodetectors using three different dielectrics (HfO2, Al2O3 and SiO2) as the hole blocking layer (HBL), and studied the influence of the HBLs on the photoconducting performance of the photodetectors. The microstructure of the c-Se layer is greatly influenced by the nucleation behavior of the tellurium (Te) adhesion layer deposited between the c-Se layer and the HBLs. The photoconducting performance of the photodetectors is basically dependent on the barrier height at the junctions of the HBL with the tin-doped indium oxide (ITO) anode and with the c-Se layer. A higher barrier height at the HBL/ITO junction leads to a lower dark current density (ID) of the photodetectors. However, the photodetector with the SiO2 HBL exhibits the largest ID as the bias exceeds 2 V although it has the highest junction barrier height. We attribute the abnormity to the rugged morphology of the c-Se layer, which is a result of a less dense Te nucleation on the SiO2 HBL. The photocurrent density (Iph) is inversely related to the junction barrier height at the HBL/c-Se contact. The c-Se photodetector with the HfO2 HBL has the largest IPh and the one with the SiO2 HBL has the smallest. The photodetector with the HfO2 HBL exhibits a quantum efficiency of ~ 89% at 6 V.

Original languageEnglish
Pages (from-to)15203-15211
Number of pages9
JournalJournal of Materials Science: Materials in Electronics
Volume29
Issue number17
DOIs
StatePublished - 1 Sep 2018

Fingerprint Dive into the research topics of 'Effect of hole blocking dielectric layer on microstructure and photoconducting properties of polycrystalline Se thin films'. Together they form a unique fingerprint.

Cite this