Eager synching: A selective logging strategy for fast fsync() on flash-based android devices

Li Pin Chang, Po Han Sung, Po Tsang Chen, Po Hung Chen

Research output: Contribution to journalArticle

5 Scopus citations

Abstract

Flash storage has been a standard component in Android devices. Recent research has reported that application data management in Android involves frequent fsync() operations. The current fsync() implementations, including those of ext4 and F2FS, have several common drawbacks. Specifically, ext4 commits a transaction every time to sync a file, whereas F2FS commits a checkpoint to sync a directory. Committing a transaction or checkpoint flushes all dirty data from the page cache to the flash storage via many small, random block write requests. The resultant high I/O frequency and excessive write traffic cause a high fsync() latency. This study presents an efficient fsync() method, called eager synching, which is based on a simple idea: write less, and write sequentially. To sync a file, eager synching writes only a subset of all dirty data in the page cache to a sequential log space using a few sequential block write requests. It does not involve transaction or checkpoint committing. We successfully implemented eager synching in ext4 and F2FS, and our experimental results show that, compared with the original fsync() methods of ext4 and F2FS, eager synching reduced the average and maximum fsync() latencies by up to 72% and 91%, respectively, block-level write traffic by up to 35%, and I/O frequency by up to 66%. Through enhanced crash recovery procedures, eager synching can successfully recover all previously synched files while still guaranteeing the file system integrity. We also conducted live application replays using the proposed eager synching approach and observed that this approach significantly improved the application frame updating rate and application execution time.

Original languageEnglish
Article number34
JournalACM Transactions on Embedded Computing Systems
Volume16
Issue number2
DOIs
StatePublished - 1 Dec 2016

Keywords

  • Android
  • File system
  • Flash storage
  • Fsync()
  • eMMC

Fingerprint Dive into the research topics of 'Eager synching: A selective logging strategy for fast fsync() on flash-based android devices'. Together they form a unique fingerprint.

  • Cite this