Abstract
Dropwise condensation can enhance heat transfer by an order of magnitude compared to film condensation. Superhydrophobicity appears ideal to promote continued dropwise condensation which requires rapid removal of condensate drops; however, such promotion has not been reported on engineered surfaces. This letter reports continuous dropwise condensation on a superhydrophobic surface with short carbon nanotubes deposited on micromachined posts, a two-tier texture mimicking lotus leaves. On such micro-/nanostructured surfaces, the condensate drops prefer the Cassie state which is thermodynamically more stable than the Wenzel state. With a hexadecanethiol coating, superhydrophobicity is retained during and after condensation and rapid drop removal is enabled.
Original language | English |
---|---|
Article number | 173108 |
Journal | Applied Physics Letters |
Volume | 90 |
Issue number | 17 |
DOIs | |
State | Published - 21 May 2007 |