TY - JOUR
T1 - Doping ZnO Electron Transport Layers with MoS2 Nanosheets Enhances the Efficiency of Polymer Solar Cells
AU - Huang, Yi Jiun
AU - Chen, Hsiu Cheng
AU - Lin, Hsi Kuei
AU - Wei, Kung-Hwa
PY - 2018/6/13
Y1 - 2018/6/13
N2 - In this study, we incorporated molybdenum disulfide (MoS2) nanosheets into sol-gel processing of zinc oxide (ZnO) to form ZnO:MoS2 composites for use as electron transport layers (ETLs) in inverted polymer solar cells featuring a binary bulk heterojunction active layer. We could effectively tune the energy band of the ZnO:MoS2 composite film from 4.45 to 4.22 eV by varying the content of MoS2 up to 0.5 wt %, such that the composite was suitable for use in bulk heterojunction photovoltaic devices based on poly[bis(5-(2-ethylhexyl)thien-2-yl)benzodithiophene-alt-(4-(2-ethylhexyl)-3-fluorothienothiophene)-2-carboxylate-2,6-diyl] (PTB7-TH)/phenyl-C71-butryric acid methyl ester (PC71BM). In particular, the power conversion efficiency (PCE) of the PTB7-TH/PC71BM (1:1.5, w/w) device incorporating the ZnO:MoS2 (0.5 wt %) composite layer as the ETL was 10.1%, up from 8.8% for the corresponding device featuring ZnO alone as the ETL, a relative increase of 15%. Incorporating a small amount of MoS2 nanosheets into the ETL altered the morphology of the ETL and resulted in enhanced current densities, fill factors, and PCEs for the devices. We used ultraviolet photoelectron spectroscopy, synchrotron grazing incidence wide-/small-angle X-ray scattering, atomic force microscopy, and transmission electron microscopy to characterize the energy band structures, internal structures, surface roughness, and morphologies, respectively, of the ZnO:MoS2 composite films.
AB - In this study, we incorporated molybdenum disulfide (MoS2) nanosheets into sol-gel processing of zinc oxide (ZnO) to form ZnO:MoS2 composites for use as electron transport layers (ETLs) in inverted polymer solar cells featuring a binary bulk heterojunction active layer. We could effectively tune the energy band of the ZnO:MoS2 composite film from 4.45 to 4.22 eV by varying the content of MoS2 up to 0.5 wt %, such that the composite was suitable for use in bulk heterojunction photovoltaic devices based on poly[bis(5-(2-ethylhexyl)thien-2-yl)benzodithiophene-alt-(4-(2-ethylhexyl)-3-fluorothienothiophene)-2-carboxylate-2,6-diyl] (PTB7-TH)/phenyl-C71-butryric acid methyl ester (PC71BM). In particular, the power conversion efficiency (PCE) of the PTB7-TH/PC71BM (1:1.5, w/w) device incorporating the ZnO:MoS2 (0.5 wt %) composite layer as the ETL was 10.1%, up from 8.8% for the corresponding device featuring ZnO alone as the ETL, a relative increase of 15%. Incorporating a small amount of MoS2 nanosheets into the ETL altered the morphology of the ETL and resulted in enhanced current densities, fill factors, and PCEs for the devices. We used ultraviolet photoelectron spectroscopy, synchrotron grazing incidence wide-/small-angle X-ray scattering, atomic force microscopy, and transmission electron microscopy to characterize the energy band structures, internal structures, surface roughness, and morphologies, respectively, of the ZnO:MoS2 composite films.
KW - electron transport layer
KW - inverted solar cell
KW - MoS nanosheets
KW - photovoltaics
KW - surface morphology
KW - synchrotron grazing incidence small-angle X-ray scattering
KW - ZnO:MoS nanocomposites
UR - http://www.scopus.com/inward/record.url?scp=85047464416&partnerID=8YFLogxK
U2 - 10.1021/acsami.8b06413
DO - 10.1021/acsami.8b06413
M3 - Article
C2 - 29783839
AN - SCOPUS:85047464416
VL - 10
SP - 20196
EP - 20204
JO - ACS applied materials & interfaces
JF - ACS applied materials & interfaces
SN - 1944-8244
IS - 23
ER -