Distribution of first arrival position in molecular communication

Yen Chi Lee, Chiun Chuan Chen, Ping Cheng Yeh, Chia-Han Lee

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In molecular communication systems, information is conveyed via nanoscale particles or molecules. Traditionally, the distribution of the first arrival time to the receiver is considered for system design and evaluation if nanoscale particles or molecules are diffused from the transmitter to the receiver in diffusion-based molecular communication systems. In this paper, we consider an extra information in the diffusion-based molecular communication system, namely the first arrival position at the receiver. A mathematical framework is developed to obtain the closed-form density function of the first arrival position for particles/molecules diffusing under constant net drift. The derived density function not only provides a novel analytical framework for existing molecular communication systems but may inspire novel molecular communication system design.

Original languageEnglish
Title of host publicationProceedings - ISIT 2016; 2016 IEEE International Symposium on Information Theory
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1033-1037
Number of pages5
ISBN (Electronic)9781509018062
DOIs
StatePublished - 10 Aug 2016
Event2016 IEEE International Symposium on Information Theory, ISIT 2016 - Barcelona, Spain
Duration: 10 Jul 201615 Jul 2016

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2016-August
ISSN (Print)2157-8095

Conference

Conference2016 IEEE International Symposium on Information Theory, ISIT 2016
CountrySpain
CityBarcelona
Period10/07/1615/07/16

Fingerprint Dive into the research topics of 'Distribution of first arrival position in molecular communication'. Together they form a unique fingerprint.

Cite this