Direct observation of resonance motion in complex elimination reactions: Femtosecond coherent dynamics in reduced space

Carsten Kötting, Wei-Guang Diau, John E. Baldwin, Ahmed H. Zewail*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

In this communication we report the observation of a resonant, coherent nuclear motion in the elimination reaction of 1,3-dibromopropane (DBP), a system with 27 internal degrees of freedom. The system was investigated using femtosecond time-resolved mass spectrometry, following excitation at a total energy E = 186 kcal mol-1 (n→5p Rydberg state). The vibrational coherence was observed with a period of 680 fs corresponding to the torsional vibration involving the two C-Br bonds. The C-Br bond cleavage occurs with a reaction time of 2.5 ps and yields the 3-bromopropyl radical, which subsequently reacts (cleavage of the second C-Br bond and ring closure) to give cyclopropane in 7.5 ps. These results elucidate the elementary steps and the mechanism: In a reduced space of two coordinates, the reaction coordinate involves a coherent torsional motion and C-Br bond rupture. Density functional theory (DFT) and time-dependent DFT calculations were carried out to detail the potential energy surface.

Original languageEnglish
Pages (from-to)1677-1682
JournalJournal of Physical Chemistry A
Volume105
Issue number10
DOIs
StatePublished - 1 Dec 2001

Fingerprint Dive into the research topics of 'Direct observation of resonance motion in complex elimination reactions: Femtosecond coherent dynamics in reduced space'. Together they form a unique fingerprint.

Cite this