Development of an inflammatory tissue-selective chimeric TNF receptor

Chia Jung Lee, Chao Ching Wang, Michael Chen, Kuo Hsiang Chuang, Tian Lu Cheng, Ting Yan Jian, Yun-Ming Wang, Tse Hung Huang, Kuang-Wen Liao*, Shey-Cherng Tzou

*Corresponding author for this work

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

Background: Inhibiting TNF-α is an effective therapy for inflammatory diseases such as rheumatoid arthritis. However, systemic, nondiscriminatory neutralization of TNF-α is associated with considerable adverse effects. Methods: Here, we developed a trimeric chimeric TNF receptor by linking an N-terminal mouse Acrp30 trimerization domain and an MMP-2/9 substrate sequence to the mouse extracellular domain of TNF receptor 2 followed by a C-terminal mouse tetranectin coiled-coil domain (mouse Acrp-MMP-TNFR-Tn). Results: Here, we show that the Acrp30 trimerization domain inhibited the binding activity of TNFR, possibly by closing the binding site of the trimeric receptor. Cleavage of the substrate sequence by MMP-9, an enzyme highly expressed in inflammatory sites, restored the binding activity of the mouse TNF receptor. We also constructed a recombinant human chimeric TNF receptor (human Acrp-MMP-TNFR-Tn) in which an MMP-13 substrate sequence was used to link the human Acrp and the human TNF receptor 2. Human Acrp-MMP-TNFR-Tn showed reduced binding activity, and MMP-13 digestion recovered its binding activity with TNF-α. Conclusion: Acrp-masked chimeric TNF receptors may be able to be used for inflammatory tissue-selective neutralization of TNF-α to reduce the adverse effects associated with systemic neutralization of TNF-α.

Original languageEnglish
Pages (from-to)340-346
Number of pages7
JournalCytokine
Volume113
DOIs
StatePublished - 1 Jan 2019

Keywords

  • Chimeric TNF receptor
  • Inflammation
  • Matrix metalloproteinase (MMP)
  • Tumor necrosis factor-α/receptor (TNF-α/TNFR)

Fingerprint Dive into the research topics of 'Development of an inflammatory tissue-selective chimeric TNF receptor'. Together they form a unique fingerprint.

Cite this