Development of a parallel Poisson's equation solver with adaptive mesh refinement and its application in field emission prediction

K. H. Hsu, P. Y. Chen, C. T. Hung, L. H. Chen, Jong-Shinn Wu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

A parallel electrostatic Poisson's equation solver coupled with parallel adaptive mesh refinement (PAMR) is developed in this paper. The three-dimensional Poisson's equation is discretized using the Galerkin finite element method using a tetrahedral mesh. The resulting matrix equation is then solved through the parallel conjugate gradient method using the non-overlapping subdomain-by-subdomain scheme. A PAMR module is coupled with this parallel Poisson's equation solver to adaptively refine the mesh where the variation of potentials is large. The parallel performance of the parallel Poisson's equation is studied by simulating the potential distribution of a CNT-based triode-type field emitter. Results with ∼100 000 nodes show that a parallel efficiency of 84.2% is achieved in 32 processors of a PC-cluster system. The field emission properties of a single CNT triode- and tetrode-type field emitter in a periodic cell are computed to demonstrate their potential application in field emission prediction.

Original languageEnglish
Pages (from-to)948-960
Number of pages13
JournalComputer Physics Communications
Volume174
Issue number12
DOIs
StatePublished - 15 Jun 2006

Keywords

  • Field emission
  • Galerkin finite element method
  • Parallel adaptive mesh refinement
  • Parallel Poisson's equation

Fingerprint Dive into the research topics of 'Development of a parallel Poisson's equation solver with adaptive mesh refinement and its application in field emission prediction'. Together they form a unique fingerprint.

Cite this