Development of a hydrological ensemble prediction system to assist with decision-making for floods during typhoons

Sheng Chi Yang, Tsun Hua Yang*, Ya Chi Chang, Cheng Hsin Chen, Mei Ying Lin, Jui Yi Ho, Kwan Tun Lee

*Corresponding author for this work

Research output: Contribution to journalArticle

Abstract

Hydrological ensemble prediction systems (HEPSs) can provide decision makers with early warning information, such as peak stage and peak time, with enough lead time to take the necessary measures to mitigate disasters. This study develops a HEPS that integrates meteorological, hydrological, storm surge, and global tidal models. It is established to understand information about the uncertainty of numerical weather predictions and then to provide probabilistic flood forecasts instead of commonly adopted deterministic forecasts. The accuracy of flood forecasting is increased. However, the spatiotemporal uncertainty associated with these numerical models in the HEPS and the difficulty in interpreting the model results hinder effective decision-making during emergency response situations. As a result, the efficiency of decision-making is not always increased. Thus, this study also presents a visualization method to interpret the ensemble results to enhance the understanding of probabilistic runoff forecasts for operational purposes. A small watershed with area of 100 km2 and four historical typhoon events were selected to evaluate the performance of the method. The results showed that the proposed HEPS along with the visualization approach improved the intelligibility of forecasts of the peak stages and peak times compared to that of approaches previously described in the literature. The capture rate is greater than 50%, which is considered practical for decision makers. The proposed HEPS with the visualization method has potential for both decreasing the uncertainty of numerical rainfall forecasts and improving the efficiency of decision-making for flood forecasts.

Original languageEnglish
Article number4258
JournalSustainability (Switzerland)
Volume12
Issue number10
DOIs
StatePublished - 1 May 2020

Keywords

  • Flood forecast
  • Hydrological ensemble prediction system
  • Numerical weather model
  • Peak flow
  • Visualization

Fingerprint Dive into the research topics of 'Development of a hydrological ensemble prediction system to assist with decision-making for floods during typhoons'. Together they form a unique fingerprint.

Cite this