Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber

Yung Chiang Chung, Yuh Lih Hsu, Chun Ping Jen, Ming-Chang Lu, Yu Cheng Lin*

*Corresponding author for this work

Research output: Contribution to journalArticle

60 Scopus citations

Abstract

This paper proposes the design of a passive micromixer that utilizes the self-circulation of the fluid in the mixing chamber for applications in the Micro Total Analysis Systems (μTAS). The micromixer with a total volume of about 20 μL and consisting of an inlet port, a circular mixing chamber and an outlet port was designed. The device was actuated by a pneumatic pump to induce self-circulation of the fluid. The self-circulation phenomenon in the micromixer was predicted by the computational simulation of the microfluidic dynamics. Flow visualization with fluorescence tracer was used to verify the numerical simulations and indicated that the simulated and the experimental results were in good agreement. Besides, an index for quantifying the mixing performance was employed to compare different situations and to demonstrate the advantages of the self-circulation mixer. The mixing efficiencies in the mixer under different Reynolds numbers (Re) were evaluated numerically. The numerical results revealed that the mixing efficiency of the mixer with self-circulation was 1.7 to 2 times higher than that of the straight channel without a mixing chamber at Re = 150. When Re was as low as 50, the mixing efficiency of the mixer with self-circulation in the mixing chamber was improved approximately 30% higher than that in the straight channel. The results indicated that the self-circulation in the mixer could enhance the mixing even at low Re. The features of simple mixing method and fabrication process make this micromixer ideally suitable for μTAS applications.

Original languageEnglish
Pages (from-to)70-77
Number of pages8
JournalLab on a Chip
Volume4
Issue number1
DOIs
StatePublished - 1 Jan 2004

Fingerprint Dive into the research topics of 'Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber'. Together they form a unique fingerprint.

  • Cite this