Deep video frame interpolation using cyclic frame generation

Yu Lun Liu, Yi Tung Liao, Yen Yu Lin, Yung Yu Chuang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

46 Scopus citations

Abstract

Video frame interpolation algorithms predict intermediate frames to produce videos with higher frame rates and smooth view transitions given two consecutive frames as inputs. We propose that: synthesized frames are more reliable if they can be used to reconstruct the input frames with high quality. Based on this idea, we introduce a new loss term, the cycle consistency loss. The cycle consistency loss can better utilize the training data to not only enhance the interpolation results, but also maintain the performance better with less training data. It can be integrated into any frame interpolation network and trained in an end-to-end manner. In addition to the cycle consistency loss, we propose two extensions: motion linearity loss and edge-guided training. The motion linearity loss approximates the motion between two input frames to be linear and regularizes the training. By applying edge-guided training, we further improve results by integrating edge information into training. Both qualitative and quantitative experiments demonstrate that our model outperforms the state-of-the-art methods. The source codes of the proposed method and more experimental results will be available at https://github.com/alex04072000/CyclicGen.

Original languageEnglish
Title of host publication33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PublisherAAAI press
Pages8794-8802
Number of pages9
ISBN (Electronic)9781577358091
StatePublished - 2019
Event33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States
Duration: 27 Jan 20191 Feb 2019

Publication series

Name33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019

Conference

Conference33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
CountryUnited States
CityHonolulu
Period27/01/191/02/19

Fingerprint Dive into the research topics of 'Deep video frame interpolation using cyclic frame generation'. Together they form a unique fingerprint.

Cite this