Deep Bayesian mining, learning and understanding

Jen-Tzung Chien*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

This tutorial addresses the advances in deep Bayesian mining and learning for natural language with ubiquitous applications ranging from speech recognition to document summarization, text classification, text segmentation, information extraction, image caption generation, sentence generation, dialogue control, sentiment classification, recommendation system, question answering and machine translation, to name a few. Traditionally, “deep learning” is taken to be a learning process where the inference or optimization is based on the real-valued deterministic model. The “semantic structure” in words, sentences, entities, actions and documents drawn from a large vocabulary may not be well expressed or correctly optimized in mathematical logic or computer programs. The “distribution function” in discrete or continuous latent variable model for natural language may not be properly decomposed or estimated. This tutorial addresses the fundamentals of statistical models and neural networks, and focus on a series of advanced Bayesian models and deep models including hierarchical Dirichlet process, Chinese restaurant process, hierarchical Pitman-Yor process, Indian buffet process, recurrent neural network (RNN), long short-term memory, sequence-to-sequence model, variational auto-encoder (VAE), generative adversarial network (GAN), attention mechanism, memory-augmented neural network, skip neural network, stochastic neural network, predictive state neural network, policy neural network. We present how these models are connected and why they work for a variety of applications on symbolic and complex patterns in natural language. The variational inference and sampling method are formulated to tackle the optimization for complicated models. The word and sentence embeddings, clustering and co-clustering are merged with linguistic and semantic constraints. A series of case studies are presented to tackle different issues in deep Bayesian mining, learning and understanding. At last, we will point out a number of directions and outlooks for future studies.

Original languageEnglish
Title of host publicationKDD 2019 - Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PublisherAssociation for Computing Machinery
Pages3197-3198
Number of pages2
ISBN (Electronic)9781450362016
DOIs
StatePublished - 25 Jul 2019
Event25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019 - Anchorage, United States
Duration: 4 Aug 20198 Aug 2019

Publication series

NameProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

Conference

Conference25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019
CountryUnited States
CityAnchorage
Period4/08/198/08/19

Keywords

  • Bayesian learning
  • Deep learning
  • Natural language processing

Fingerprint Dive into the research topics of 'Deep Bayesian mining, learning and understanding'. Together they form a unique fingerprint.

  • Cite this

    Chien, J-T. (2019). Deep Bayesian mining, learning and understanding. In KDD 2019 - Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 3197-3198). (Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining). Association for Computing Machinery. https://doi.org/10.1145/3292500.3332267