Deep 360 pilot: Learning a deep agent for piloting through 360° sports videos

Hou Ning Hu, Yen Chen Lin, Ming Yu Liu, Hsien Tzu Cheng, Yung-Ju Chang, Min Sun

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

51 Scopus citations

Abstract

Watching a 360° sports video requires a viewer to continuously select a viewing angle, either through a sequence of mouse clicks or head movements. To relieve the viewer from this "360 piloting" task, we propose "deep 360 pilot" - a deep learning-based agent for piloting through 360° sports videos automatically. At each frame, the agent observes a panoramic image and has the knowledge of previously selected viewing angles. The task of the agent is to shift the current viewing angle (i.e. action) to the next preferred one (i.e., goal). We propose to directly learn an online policy of the agent from data. Specifically, we leverage a state-of-the-art object detector to propose a few candidate objects of interest (yellow boxes in Fig. 1). Then, a recurrent neural network is used to select the main object (green dash boxes in Fig. 1). Given the main object and previously selected viewing angles, our method regresses a shift in viewing angle to move to the next one. We use the policy gradient technique to jointly train our pipeline, by minimizing: (1) a regression loss measuring the distance between the selected and ground truth viewing angles, (2) a smoothness loss encouraging smooth transition in viewing angle, and (3) maximizing an expected reward of focusing on a foreground object. To evaluate our method, we built a new 360-Sports video dataset consisting of five sports domains. We trained domain-specific agents and achieved the best performance on viewing angle selection accuracy and users' preference compared to [53] and other baselines.

Original languageEnglish
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1396-1405
Number of pages10
ISBN (Electronic)9781538604571
DOIs
StatePublished - 6 Nov 2017
Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
Duration: 21 Jul 201726 Jul 2017

Publication series

NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Volume2017-January

Conference

Conference30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
CountryUnited States
CityHonolulu
Period21/07/1726/07/17

Fingerprint Dive into the research topics of 'Deep 360 pilot: Learning a deep agent for piloting through 360° sports videos'. Together they form a unique fingerprint.

Cite this