Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO 2

Jiqing Jiao, Rui Lin, Shoujie Liu, Weng Chon Cheong, Chao Zhang, Zheng Chen, Yuan Pan, Jianguo Tang, Konglin Wu, Sung Fu Hung, Hao Ming Chen, Lirong Zheng, Qi Lu, Xuan Yang, Bingjun Xu, Hai Xiao*, Jun Li, Dingsheng Wang, Qing Peng, Chen ChenYadong Li

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

143 Scopus citations

Abstract

The electrochemical reduction of CO 2 could play an important role in addressing climate-change issues and global energy demands as part of a carbon-neutral energy cycle. Single-atom catalysts can display outstanding electrocatalytic performance; however, given their single-site nature they are usually only amenable to reactions that involve single molecules. For processes that involve multiple molecules, improved catalytic properties could be achieved through the development of atomically dispersed catalysts with higher complexities. Here we report a catalyst that features two adjacent copper atoms, which we call an ‘atom-pair catalyst’, that work together to carry out the critical bimolecular step in CO 2 reduction. The atom-pair catalyst features stable Cu 1 0 –Cu 1 x+ pair structures, with Cu 1 x+ adsorbing H 2 O and the neighbouring Cu 1 0 adsorbing CO 2 , which thereby promotes CO 2 activation. This results in a Faradaic efficiency for CO generation above 92%, with the competing hydrogen evolution reaction almost completely suppressed. Experimental characterization and density functional theory revealed that the adsorption configuration reduces the activation energy, which generates high selectivity, activity and stability under relatively low potentials.

Original languageEnglish
Pages (from-to)222-228
Number of pages7
JournalNature Chemistry
Volume11
Issue number3
DOIs
StatePublished - 1 Mar 2019

Fingerprint Dive into the research topics of 'Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO <sub>2</sub>'. Together they form a unique fingerprint.

Cite this