Compact single-shot metalens depth sensors inspired by eyes of jumping spiders

Qi Guo, Zhujun Shi, Yao-Wei Huang, Emma Alexander, Cheng-Wei Qiu, Federico Capasso, Todd Zickler

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Jumping spiders (Salticidae) rely on accurate depth perception for predation and navigation. They accomplish depth perception, despite their tiny brains, by using specialized optics. Each principal eye includes a multitiered retina that simultaneously receives multiple images with different amounts of defocus, and from these images, distance is decoded with relatively little computation. We introduce a compact depth sensor that is inspired by the jumping spider. It combines metalens optics, which modifies the phase of incident light at a subwavelength scale, with efficient computations to measure depth from image defocus. Instead of using a multitiered retina to transduce multiple simultaneous images, the sensor uses a metalens to split the light that passes through an aperture and concurrently form 2 differently defocused images at distinct regions of a single planar photosensor. We demonstrate a system that deploys a 3-mm-diameter metalens to measure depth over a 10-cm distance range, using fewer than 700 floating point operations per output pixel. Compared with previous passive depth sensors, our metalens depth sensor is compact, single-shot, and requires a small amount of computation. This integration of nanophotonics and efficient computation brings artificial depth sensing closer to being feasible on millimeter-scale, microwatts platforms such as microrobots and microsensor networks.

Original languageEnglish
Pages (from-to)22959-22965
Number of pages7
JournalProceedings of the National Academy of Sciences of the United States of America
Volume116
Issue number46
DOIs
StatePublished - 12 Nov 2019

Keywords

  • depth sensor
  • metalens
  • jumping spider
  • ACHROMATIC METALENS
  • DEFOCUS
  • PERCEPTION
  • OPTICS

Cite this