Collective Oscillations in Coupled-Cell Systems

Kuan Wei Chen, Chih Wen Shih*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


We investigate oscillations in coupled systems. The methodology is based on the Hopf bifurcation theorem and a condition extended from the Routh–Hurwitz criterion. Such a condition leads to locating the bifurcation values of the parameters. With such an approach, we analyze a single-cell system modeling the minimal genetic negative feedback loop and the coupled-cell system composed by these single-cell systems. We study the oscillatory properties for these systems and compare these properties between the model with Hill-type repression and the one with protein-sequestration-based repression. As the parameters move from the Hopf bifurcation value for single cells to the one for coupled cells, we compute the eigenvalues of the linearized systems to obtain the magnitude of the collective frequency when the periodic solution of the coupled-cell system is generated. Extending from this information on the parameter values, we further compute and compare the collective frequency for the coupled-cell system and the average frequency of the decoupled individual cells. To compare these scenarios with other biological oscillators, we perform parallel analysis and computations on a segmentation clock model.

Original languageEnglish
Article number62
JournalBulletin of Mathematical Biology
Issue number6
StatePublished - Jun 2021


  • Average period
  • Biological rhythm
  • Collective period
  • Hopf bifurcation
  • Oscillation

Fingerprint Dive into the research topics of 'Collective Oscillations in Coupled-Cell Systems'. Together they form a unique fingerprint.

Cite this