Coincidence momentum imaging of four- and three-body Coulomb explosion of formaldehyde in ultrashort intense laser fields

Chien-Ming Tseng, Mizuho Fushitani, Akitaka Matsuda, Akiyoshi Hishikawa*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Ion-coincidence momentum imaging of Coulomb explosion of formaldehyde (H2CO) in femtosecond intense laser fields (800 nm, 1.3 × 1015 W/cm2) is performed with two different laser pulse durations (7 fs and 35 fs). In the 7-fs laser fields, the full fragmentation pathway from H2CO4+ → H+ + H+ + C+ + O+ is identified. The angles between the fragment momenta are well reproduced by a simple Coulomb explosion model from the geometry of neutral formaldehyde, showing that the molecular structure is virtually frozen along the bending coordinates during the multiple ionization. Three-body Coulomb explosion pathways from triply charged states, H2CO3+ → H+ + H+ + CO+ and H+ + CH+ + O+, are observed in both the 7-fs and 35-fs laser fields. Significant changes in the momentum angle distribution and asymmetric energy partitioning between two H+ ions are observed in the 35-fs case, which are attributed to structural deformation prior to the Coulomb explosion in the longer pulse.

Original languageEnglish
Pages (from-to)25-30
Number of pages6
JournalJournal of Electron Spectroscopy and Related Phenomena
Volume228
DOIs
StatePublished - 1 Oct 2018

Keywords

  • Coincidence momentum imaging
  • Coulomb explosion
  • Formaldehyde
  • Intense laser fields
  • Molecular structure

Fingerprint Dive into the research topics of 'Coincidence momentum imaging of four- and three-body Coulomb explosion of formaldehyde in ultrashort intense laser fields'. Together they form a unique fingerprint.

Cite this