Code placement and replacement strategies for wideband CDMA OVSF code tree management

Yu-Chee Tseng*, Chih Min Chao

*Corresponding author for this work

Research output: Contribution to journalArticle

101 Scopus citations


The use of OVSF codes in WCDMA systems has offered opportunities to provide variable data rates to flexibly support applications with different bandwidth requirements. Two important issues in such an environment are the code placement problem and code replacement problem. The former may have significant impact on code utilization and, thus, code blocking probability, while the latter may affect the code reassignment cost if dynamic code assignment is to be conducted. The general objective is to make the OVSF code tree as compact as possible so as to support more new calls by incurring less blocking probability and less reassignment costs. Earlier studies about these two problems either do not consider the structure of the OVSF code tree or cannot utilize the OVSF codes efficiently. To reduce the call blocking probability and the code reassignment cost, we propose two simple yet efficient strategies that can be adopted by both code placement and code replacement: leftmost and crowded-first. Numerical analyses on call blocking probability and bandwidth utilization of OVSF code trees when code reassignment is supported are provided. Our simulation results show that the crowded-first strategy can significantly reduce, for example, the code blocking probability by 77 percent and the number of reassignments by 81 percent, as opposed to the random strategy when the system is 80 percent fully loaded and the max SF = 256.

Original languageEnglish
Pages (from-to)293-302
Number of pages10
JournalIEEE Transactions on Mobile Computing
Issue number4
StatePublished - 1 Dec 2002


  • 3G
  • Mobile computing
  • OVSF
  • Personal communication services
  • Wireless communication

Fingerprint Dive into the research topics of 'Code placement and replacement strategies for wideband CDMA OVSF code tree management'. Together they form a unique fingerprint.

  • Cite this