Channel codes for reliability enhancement in molecular communication

Po Jen Shih, Chia-Han Lee, Ping Cheng Yeh, Kwang Cheng Chen

Research output: Contribution to journalArticlepeer-review

54 Scopus citations

Abstract

Molecular communications emerges as a promising scheme for communications between nanoscale devices. In diffusion-based molecular communications, molecules as information symbols diffusing in the fluid environments suffer from molecule crossovers, i.e., the arriving order of molecules is different from their transmission order, leading to intersymbol interference (ISI). In this paper, we introduce a new family of channel codes, called ISI-free codes, which improve the communication reliability while keeping the decoding complexity fairly low in the diffusion environment modeled by the Brownian motion. We propose general encoding/decoding schemes for the ISI-free codes, working upon the modulation schemes of transmitting a fixed number of identical molecules at a time. In addition, the bit error rate (BER) approximation function of the ISI-free codes is derived mathematically as an analytical tool to decide key factors in the BER performance. Compared with the uncoded systems, the proposed ISI-free codes offer good performance with reasonably low complexity for diffusion-based molecular communication systems.

Original languageEnglish
Article number6708566
Pages (from-to)857-867
Number of pages11
JournalIEEE Journal on Selected Areas in Communications
Volume31
Issue number12
DOIs
StatePublished - 1 Dec 2013

Keywords

  • channel coding
  • diffusion
  • inter-symbol interference (ISI)
  • Molecular communications

Fingerprint Dive into the research topics of 'Channel codes for reliability enhancement in molecular communication'. Together they form a unique fingerprint.

Cite this