Ce doped-GeSbTe thin films applied to phase-change random access memory devices

Yu Jen Huang*, Min Chuan Tsai, Chiung Hsin Wang, Tsung-Eong Hsien

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations


A study on microstructure and electrical property of cerium (Ce)-doped Ge2Sb2Te5 (GST) layers for phase-change memory (PCM) application were presented. Ce doping does not suppress the resistivity of amorphous GST and the resistivity ratio of amorphous and crystalline GST remains at about 105. Further, Ce-doping escalates the recrystallization temperature (Tx) of GST from 159 to 236°C. Such a unique behavior would greatly benefit the preservation of signal contrast as well as the high-density signal storage and will not cause the increase of device writing current. X-ray diffraction (XRD) indicated that Ce doping stabilizes amorphous GST and suppresses the formation of hexagonal phase. Transmission electron microscopy (TEM) revealed Ce doping refines the grain size of GST. Kissinger's analysis found that Tx and activation energy (Eaexo) of phase transition for doped-GST both increase with the increase of Ce content. Isothermal experiment found the Ce doping increases temperature for 10-yr data retention from 76 and 170°C. This is attributed to the presence of Ce solutes in GST matrix that inhibits the grain growth during recrystallization. Static-mode electrical test on PCM device containing doped GST as the programming layer found that Ce incorporation indeed increases the switching threshold voltage (Vth). This confirmed that Ce doping effectively retards the crystallization of GST and improves the stability of amorphous GST.

Original languageEnglish
Title of host publicationPhase-Change Materials for Memory and Reconfigurable Electronics Applications
Number of pages6
StatePublished - 1 Dec 2010
Event2010 MRS Spring Meeting - San Francisco, CA, United States
Duration: 5 Apr 20109 Apr 2010

Publication series

NameMaterials Research Society Symposium Proceedings
ISSN (Print)0272-9172


Conference2010 MRS Spring Meeting
CountryUnited States
CitySan Francisco, CA

Fingerprint Dive into the research topics of 'Ce doped-GeSbTe thin films applied to phase-change random access memory devices'. Together they form a unique fingerprint.

Cite this