TY - JOUR
T1 - Carrier capture and relaxation in charged quantum dots triggered by vibrational relaxation
AU - Kechiantz, A. M.
AU - Sun, Kien-Wen
PY - 2008/1/1
Y1 - 2008/1/1
N2 - Local polarization and the strain of the crystal lattice around the charged quantum dot in semiconductors must vibrate to relax when the mobile carrier is captured by the dot and makes it uncharged. Triggered vibrations induce the sudden perturbation of electronic states in the quantum dot. The Hamiltonian of electron interaction with a local vibrating field and carrier capture time are calculated. It is shown that the principle of uncertainty has a strong influence on this effect. The calculated values of electron capture time are on a sub-picosecond timescale at a high pumping intensity, and are strongly dependent on the scale of quantum confinement. The calculations fit well with photoluminescence rising times τ=0.45 ps [K. Gündoǧdu, K.C. Hall, T.F. Boggess, D.G. Deppe, O.B. Shchekin, Appl. Phys. Lett. 85 (2004) 4570.] and τ=1.7 ps [K.W. Sun, A. Kechiantz, B.C. Lee, C.P. Lee, Appl. Phys. Lett. 88 (2006) 163117.] which are observed in the experiments on p-doped InAs quantum dots.
AB - Local polarization and the strain of the crystal lattice around the charged quantum dot in semiconductors must vibrate to relax when the mobile carrier is captured by the dot and makes it uncharged. Triggered vibrations induce the sudden perturbation of electronic states in the quantum dot. The Hamiltonian of electron interaction with a local vibrating field and carrier capture time are calculated. It is shown that the principle of uncertainty has a strong influence on this effect. The calculated values of electron capture time are on a sub-picosecond timescale at a high pumping intensity, and are strongly dependent on the scale of quantum confinement. The calculations fit well with photoluminescence rising times τ=0.45 ps [K. Gündoǧdu, K.C. Hall, T.F. Boggess, D.G. Deppe, O.B. Shchekin, Appl. Phys. Lett. 85 (2004) 4570.] and τ=1.7 ps [K.W. Sun, A. Kechiantz, B.C. Lee, C.P. Lee, Appl. Phys. Lett. 88 (2006) 163117.] which are observed in the experiments on p-doped InAs quantum dots.
KW - Carrier capture
KW - Quantum dot
UR - http://www.scopus.com/inward/record.url?scp=37349027563&partnerID=8YFLogxK
U2 - 10.1016/j.physe.2007.08.121
DO - 10.1016/j.physe.2007.08.121
M3 - Article
AN - SCOPUS:37349027563
VL - 40
SP - 668
EP - 673
JO - Physica E: Low-Dimensional Systems and Nanostructures
JF - Physica E: Low-Dimensional Systems and Nanostructures
SN - 1386-9477
IS - 3
ER -