Abstract
Broadband antireflection and field emission characteristics of silicon nanopillars (Si-NPs) fabricated by self-masking dry etching in hydrogen-containing plasma were systematically investigated. In particular, the effects of ultrathin (5-20 nm) titanium nitride (TiN) films deposited on Si-NPs by atomic layer deposition (ALD) on the optoelectronic properties were explored. The results showed that by coating the Si-NPs with a thin layer of TiN the antireflection capability of pristine Si-NPs can be significantly improved, especially in the wavelength range of 1000-1500 nm. The enhanced field emission characteristics of these TiN/Si-NP heterostructures suggest that, in addition to the reflectance suppression in the long wavelength range arising from the strong wavelength-dependent refractive index of TiN, the TiN-coating may have also significantly modified the effective work function at the TiN/Si interface as well.
Original language | English |
---|---|
Pages (from-to) | 9846-9851 |
Number of pages | 6 |
Journal | Nanoscale |
Volume | 6 |
Issue number | 16 |
DOIs | |
State | Published - 21 Aug 2014 |