Beautyglow: On-demand makeup transfer framework with reversible generative network

Hung Jen Chen, Ka Ming Hui, Szu Yu Wang, Li Wu Tsao, Hong Han Shuai, Wen Huang Cheng

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

As makeup has been widely-adopted for beautification, finding suitable makeup by virtual makeup applications becomes popular. Therefore, a recent line of studies proposes to transfer the makeup from a given reference makeup image to the source non-makeup one. However, it is still challenging due to the massive number of makeup combinations. To facilitate on-demand makeup transfer, in this work, we propose BeautyGlow that decompose the latent vectors of face images derived from the Glow model into makeup and non-makeup latent vectors. Since there is no paired dataset, we formulate a new loss function to guide the decomposition. Afterward, the non-makeup latent vector of a source image and makeup latent vector of a reference image and are effectively combined and revert back to the image domain to derive the results. Experimental results show that the transfer quality of BeautyGlow is comparable to the state-of-the-art methods, while the unique ability to manipulate latent vectors allows BeautyGlow to realize on-demand makeup transfer.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages10034-10042
Number of pages9
DOIs
StatePublished - Jun 2019
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: 16 Jun 201920 Jun 2019

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June
ISSN (Print)1063-6919

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
CountryUnited States
CityLong Beach
Period16/06/1920/06/19

Keywords

  • Deep Learning
  • Image and Video Synthesis

Fingerprint Dive into the research topics of 'Beautyglow: On-demand makeup transfer framework with reversible generative network'. Together they form a unique fingerprint.

Cite this