Background removal of multiview images by learning shape priors

Yu Pao Tsai*, Cheng Hung Ko, Yi Ping Hung, Zen-Chung Shih

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Image-based rendering has been successfully used to display 3-D objects for many applications. A well-known example is the object movie which is an image-based 3-D object composed of a collection of 2-D images taken from many different viewpoints of a 3-D object. In order to integrate image-based 3-D objects into a chosen scene (e.g., a panorama), one has to meet a hard challenge-to efficiently and effectively remove the background from the foreground object. This problem is referred to as multiview images (MVIs) segmentation. Another task requires MVI segmentation is image-based 3-D reconstruction using multiview images. In this paper, we propose a new method for segmenting MVI, which integrates some useful algorithms, including the well-known graph-cut image segmentation and volumetric graph-cut. The main idea is to incorporate the shape prior into the image segmentation process. The shape prior introduced into every image of the MVI is extracted from the 3-D model reconstructed by using the volumetric graph cuts algorithm. Here, the constraint obtained from the discrete medial axis is adopted to improve the reconstruction algorithm. The proposed MVI segmentation process requires only a small amount of user intervention, which is to select a subset of acceptable segmentations of the MVI after the initial segmentation process. According to our experiments, the proposed method can provide not only good MVI segmentation, but also provide acceptable 3-D reconstructed models for certain less-demanding applications.

Original languageEnglish
Pages (from-to)2607-2616
Number of pages10
JournalIEEE Transactions on Image Processing
Volume16
Issue number10
DOIs
StatePublished - 1 Oct 2007

Keywords

  • 3-D modeling
  • Graph cut
  • Image segmentation
  • Markov random field (MRF)
  • Medial axis
  • Multiview images (MVIs)
  • Object movie
  • Volumetric graph cuts

Fingerprint Dive into the research topics of 'Background removal of multiview images by learning shape priors'. Together they form a unique fingerprint.

Cite this