Automated information mining on multimedia TV news archives

P. S. Lai*, S. S. Cheng, S. Y. Sun, T. Y. Huang, J. M. Su, Y. Y. Xu, Y. H. Chen, S. C. Chuang, C. L. Tseng, C. L. Hsieh, Y. L. Lu, Y. C. Shen, J. R. Chen, J. B. Nie, F. P. Tsai, H. C. Huang, Hsiao-Tien Pao, Hsin Chia Fu

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

3 Scopus citations

Abstract

This paper addresses an integrated information mining techniques for multimedia TV-news archive. The utilizes techniques from the fields of acoustic, image, and video analysis, for information retrieval on news story title, newsman and scene identification. The goal is to construct a compact yet meaningful abstraction of broadcast news video, allowing users to browse through large amounts of data in a non-linear fashion with flexibility and efficiency. By using acoustic analysis, the system can classify video into news versus commercials, with 90% accuracy on a data set of 400 hours TV-news recorded off the air from July 2003 to August of 2004. By applying speaker identification and/or image detection techniques, each news stories can be segmented with an accuracy of 96%. On screen captions or subtitles are recognized by OCR techniques to produce the text title of each news stories. The extracted title words can be used to link or to navigate more related News contents on the WWW. In cooperation with facial and scene analysis and recognition techniques, OCR results can provide users with multimodality query for specific news stories. Some experimental results are presented and discussed for the system reliability and performance evaluation and comparison.

Original languageEnglish
Pages (from-to)1238-1244
Number of pages7
JournalLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume3682 LNAI
DOIs
StatePublished - 1 Dec 2005
Event9th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, KES 2005 - Melbourne, Australia
Duration: 14 Sep 200516 Sep 2005

Fingerprint Dive into the research topics of 'Automated information mining on multimedia TV news archives'. Together they form a unique fingerprint.

Cite this