Atomistic-continuum hybrid simulation of heat transfer between argon flow and copper plates

Yijin Mao, Yuwen Zhang, Chung-Lung Chen

Research output: Contribution to conferencePaperpeer-review

Abstract

A simulation work aiming to study heat transfer coefficient between argon fluid flow and copper plate is carried out based on atomistic-continuum hybrid method. Navier-Stokes equations for continuum domain are solved through the Pressure Implicit with Splitting of Operators (PISO) algorithm, and the atom evolution in molecular domain is solved through the Verlet algorithm. The solver is validated by solving Couette flow and heat conduction problems. With both momentum and energy coupling method applied, simulations on convection of argon flows between two parallel plates are performed. The top plate is kept as a constant velocity and has higher temperature, while the lower one, which is modeled with FCC copper lattices, is also fixed but has lower temperature. It is found that, heat transfer between argon fluid flow and copper plate in this situation is much higher than that at macroscopic when the flow is fully developed.

Original languageEnglish
DOIs
StatePublished - 1 Jan 2014
EventASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014 - Montreal, Canada
Duration: 14 Nov 201420 Nov 2014

Conference

ConferenceASME 2014 International Mechanical Engineering Congress and Exposition, IMECE 2014
CountryCanada
CityMontreal
Period14/11/1420/11/14

Fingerprint Dive into the research topics of 'Atomistic-continuum hybrid simulation of heat transfer between argon flow and copper plates'. Together they form a unique fingerprint.

Cite this