Associative classification for human activity inference on smart phones

Yu Hsiang Peng*, Gunarto Sindoro Njoo, Shou Chun Li, Wen-Chih Peng

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

With the population of smart phones, the general trend of human activity inference is prospering under a powerful computation capabilities on modern phones. Such an assistant make users life more convenient and help them prevent from unnecessary interferences. In conventional research, the activity inference problem is considered a classification instance, so in this paper we propose an association-based classifier framework (ACF) that aims at exploring the correlation among collected sensor data. Each data consists of multiple sensor readings with a label, e.g., dining, shopping, working, driving, sporting, and entertaining. Note that ACF caters to the discrete data; as a consequence, the continuous sensor readings are needed to be transformed to some discrete groups. Therefore, we propose an Interval Length-Gini Discretization (LGD) method which considers the groups and misclassified cases to obtain the best hypothesis for a given set of data. After an appropriate discretization, we propose one-cut and memory-iteration-based approach to select a set of useful sensor-value pairs for reducing the model size by removing redundant features and guaranteeing an acceptable accuracy. In the experiments our framework has a good performance on real data set collected from 50 participants in eight months, and a smaller size than the existing classifications.

Original languageEnglish
Title of host publicationTrends and Applications in Knowledge Discovery and Data Mining - PAKDD 2014 International Workshops
Subtitle of host publicationDANTH, BDM, MobiSocial, BigEC, CloudSD, MSMV-MBI, SDA, DMDA-Health, ALSIP, SocNet, DMBIH, BigPMA, Revised Selected Papers
EditorsWen-Chih Peng, Haixun Wang, Zhi-Hua Zhou, Tu Bao Ho, Vincent S. Tseng, Arbee L.P. Chen, James Bailey
PublisherSpringer Verlag
Pages305-317
Number of pages13
ISBN (Electronic)9783319131856
DOIs
StatePublished - 1 Jan 2014
EventInternational Workshops on Data Mining and Decision Analytics for Public Health, Biologically Inspired Data Mining Techniques, Mobile Data Management, Mining, and Computing on Social Networks, Big Data Science and Engineering on E-Commerce, Cloud Service Discovery, MSMV-MBI, Scalable Dats Analytics, Data Mining and Decision Analytics for Public Health and Wellness, Algorithms for Large-Scale Information Processing in Knowledge Discovery, Data Mining in Social Networks, Data Mining in Biomedical informatics and Healthcare, Pattern Mining and Application of Big Data in conjunction with 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2014 - Tainan, Taiwan
Duration: 13 May 201416 May 2014

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume8643
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

ConferenceInternational Workshops on Data Mining and Decision Analytics for Public Health, Biologically Inspired Data Mining Techniques, Mobile Data Management, Mining, and Computing on Social Networks, Big Data Science and Engineering on E-Commerce, Cloud Service Discovery, MSMV-MBI, Scalable Dats Analytics, Data Mining and Decision Analytics for Public Health and Wellness, Algorithms for Large-Scale Information Processing in Knowledge Discovery, Data Mining in Social Networks, Data Mining in Biomedical informatics and Healthcare, Pattern Mining and Application of Big Data in conjunction with 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2014
CountryTaiwan
CityTainan
Period13/05/1416/05/14

Keywords

  • Activity recognition
  • Associative rule
  • Classification
  • Discretization
  • Feature selection
  • Smart phones

Fingerprint Dive into the research topics of 'Associative classification for human activity inference on smart phones'. Together they form a unique fingerprint.

Cite this