An optical system via liquid crystal photonic devices for photobiomodulation

Chia Ming Chang, Yi-Hsin Lin*, Abhishek Kumar Srivastava, Vladimir Grigorievich Chigrinov

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations


Photobiomodulation or low-level light therapy (LLLT) has extensive applications based on light-induced effects in biological systems. Photobiomodulation remains controversial because of a poorly understood biochemical mechanism limited by the well-known biphasic dose response or Arndt-Schulz curve. The Arndt-Schulz curve states that an optimal dose of light is a key factor for realizing a therapeutic effect. In this report, we demonstrate a tunable optical system for photobiomodulation to aid physicians in overcoming the constraints of light due to biphasic dose response. The tunable optical system is based on a white light-emitting diode and four liquid crystal (LC) photonic devices: three LC phase retarders, and one LC lens. The output light of the tunable optical system exhibits electrical tunability for the wavelength, energy density and beam size. The operating principle is introduced, and the experimental results are presented. The proposed concept can be further extended to other electrically tunable photonic devices for different clinical purposes for photobiomodulation.

Original languageEnglish
Article number4251
JournalScientific reports
Issue number1
StatePublished - 1 Dec 2018

Fingerprint Dive into the research topics of 'An optical system via liquid crystal photonic devices for photobiomodulation'. Together they form a unique fingerprint.

Cite this