@inproceedings{ebf792e472ee47f9974574c21a1d6a88,
title = "An OFDM-based 29.1Mbps 0.22nJ/bit body channel communication baseband transceiver",
abstract = "This paper proposes an energy-efficient transceiver for body channel communication. 16-QAM OFDM is adopted to enhance the data rate and (2,1,6) convolutional code is integrated to remain the transmission reliability, where the hard-decision Viterbi Decoder gives the coding gain by 2dB. The modulator of the transceiver provides two modes - high speed mode and low power mode. In the low power mode an uneven multi-level LINC architecture is adopted. The average-power based auto gain control is applied in the receiver to ensure the transmission quality under different paste distances and different users. The chip is implemented under 90nm CMOS technology with 5.2 mm2 chip area. The data rate achieves 29.1Mbps with 6.349 mW power dissipation, resulting in 0.22nJ/b bit per energy.",
keywords = "Body channel communication, High energy efficiency, High speed, OFDM, Uneven multilevel LINC",
author = "Tsai, {Ping Yuan} and Chang, {Yu Yun} and Hsu, {Shu Yu} and Chen-Yi Lee",
year = "2015",
month = may,
day = "28",
doi = "10.1109/VLSI-DAT.2015.7114538",
language = "English",
series = "2015 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2015",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "2015 International Symposium on VLSI Design, Automation and Test, VLSI-DAT 2015",
address = "United States",
note = "null ; Conference date: 27-04-2015 Through 29-04-2015",
}